QUADRANT UPPER LEFT AND LOWER RIGHT·U+259A

Character Information

Code Point
U+259A
HEX
259A
Unicode Plane
Basic Multilingual Plane
Category
Other Symbol

Character Representations

Click elements to copy
EncodingHexBinary
UTF8
E2 96 9A
11100010 10010110 10011010
UTF16 (big Endian)
25 9A
00100101 10011010
UTF16 (little Endian)
9A 25
10011010 00100101
UTF32 (big Endian)
00 00 25 9A
00000000 00000000 00100101 10011010
UTF32 (little Endian)
9A 25 00 00
10011010 00100101 00000000 00000000
HTML Entity
▚
URI Encoded
%E2%96%9A

Description

The Unicode character U+259A, also known as the "Quadrant Upper Left and Lower Right" symbol, is a less commonly used typographical element in digital text. It serves a specific purpose in representing sections or quadrants of content within a larger document or design. While it may not have a direct role in linguistic communication like other characters, its usage can be seen in technical documentation, diagrams, and layout design where the division of space is necessary. The character does not hold any notable cultural significance but serves as a useful tool for organizing information in visual media. Its precise representation in Unicode ensures that it can be accurately displayed and used across various platforms and software, contributing to its function in digital text.

How to type the symbol on Windows

Hold Alt and type 9626 on the numpad. Or use Character Map.

  1. Step 1: Determine the UTF-8 encoding bit layout

    The character has the Unicode code point U+259A. In UTF-8, it is encoded using 3 bytes because its codepoint is in the range of 0x0800 to 0xffff.

    Therefore we know that the UTF-8 encoding will be done over 16 bits within the final 24 bits and that it will have the format: 1110xxxx 10xxxxxx 10xxxxxx
    Where the x are the payload bits.

    UTF-8 Encoding bit layout by codepoint range
    Codepoint RangeBytesBit patternPayload length
    U+0000 - U+007F10xxxxxxx7 bits
    U+0080 - U+07FF2110xxxxx 10xxxxxx11 bits
    U+0800 - U+FFFF31110xxxx 10xxxxxx 10xxxxxx16 bits
    U+10000 - U+10FFFF411110xxx 10xxxxxx 10xxxxxx 10xxxxxx21 bits
  2. Step 2: Obtain the payload bits:

    Convert the hexadecimal code point U+259A to binary: 00100101 10011010. Those are the payload bits.

  3. Step 3: Fill in the bits to match the bit pattern:

    Obtain the final bytes by arranging the paylod bits to match the bit layout:
    11100010 10010110 10011010