Character Information

Code Point
U+2BD2
HEX
2BD2
Unicode Plane
Basic Multilingual Plane
Category
Other Symbol

Character Representations

Click elements to copy
EncodingHexBinary
UTF8
E2 AF 92
11100010 10101111 10010010
UTF16 (big Endian)
2B D2
00101011 11010010
UTF16 (little Endian)
D2 2B
11010010 00101011
UTF32 (big Endian)
00 00 2B D2
00000000 00000000 00101011 11010010
UTF32 (little Endian)
D2 2B 00 00
11010010 00101011 00000000 00000000
HTML Entity
⯒
URI Encoded
%E2%AF%92

Description

The Unicode character U+2BD2 represents the "GROUP MARK" (𝚽). It is a typographic symbol that serves as an indicator for grouping or separating elements in digital text, particularly in mathematical expressions and formulae. The Group Mark is utilized to demarcate different sections or groups within complex equations, ensuring clarity and legibility. Its primary function is to assist readers in easily distinguishing between distinct components of a textual or numerical expression. While the Group Mark is not commonly used outside of specialized fields like mathematics and computer science, it plays an essential role in maintaining accuracy and precision within these disciplines.

How to type the symbol on Windows

Hold Alt and type 11218 on the numpad. Or use Character Map.

  1. Step 1: Determine the UTF-8 encoding bit layout

    The character has the Unicode code point U+2BD2. In UTF-8, it is encoded using 3 bytes because its codepoint is in the range of 0x0800 to 0xffff.

    Therefore we know that the UTF-8 encoding will be done over 16 bits within the final 24 bits and that it will have the format: 1110xxxx 10xxxxxx 10xxxxxx
    Where the x are the payload bits.

    UTF-8 Encoding bit layout by codepoint range
    Codepoint RangeBytesBit patternPayload length
    U+0000 - U+007F10xxxxxxx7 bits
    U+0080 - U+07FF2110xxxxx 10xxxxxx11 bits
    U+0800 - U+FFFF31110xxxx 10xxxxxx 10xxxxxx16 bits
    U+10000 - U+10FFFF411110xxx 10xxxxxx 10xxxxxx 10xxxxxx21 bits
  2. Step 2: Obtain the payload bits:

    Convert the hexadecimal code point U+2BD2 to binary: 00101011 11010010. Those are the payload bits.

  3. Step 3: Fill in the bits to match the bit pattern:

    Obtain the final bytes by arranging the paylod bits to match the bit layout:
    11100010 10101111 10010010