SINHALA LITH DIGIT SEVEN·U+0DED

Character Information

Code Point
U+0DED
HEX
0DED
Unicode Plane
Basic Multilingual Plane
Category
Decimal Digit Number

Character Representations

Click elements to copy
EncodingHexBinary
UTF8
E0 B7 AD
11100000 10110111 10101101
UTF16 (big Endian)
0D ED
00001101 11101101
UTF16 (little Endian)
ED 0D
11101101 00001101
UTF32 (big Endian)
00 00 0D ED
00000000 00000000 00001101 11101101
UTF32 (little Endian)
ED 0D 00 00
11101101 00001101 00000000 00000000
HTML Entity
෭
URI Encoded
%E0%B7%AD

Description

U+0DED, also known as Sinhala Lith Digit Seven, is a typographic character used predominantly in digital text within the Sinhalese language. This character serves as a numerical digit, specifically representing the number seven. In Sinhalese writing, it plays an important role in conveying numerical information and values, such as in mathematical equations or numbering systems. U+0DED is essential for accurate representation of numbers within digital texts and applications that support the Sinhalese script. As part of the Unicode Standard, U+0DED ensures that this character is accurately encoded and displayed across various platforms and devices, promoting cross-platform compatibility and readability in digital Sinhalese text.

How to type the symbol on Windows

Hold Alt and type 3565 on the numpad. Or use Character Map.

  1. Step 1: Determine the UTF-8 encoding bit layout

    The character has the Unicode code point U+0DED. In UTF-8, it is encoded using 3 bytes because its codepoint is in the range of 0x0800 to 0xffff.

    Therefore we know that the UTF-8 encoding will be done over 16 bits within the final 24 bits and that it will have the format: 1110xxxx 10xxxxxx 10xxxxxx
    Where the x are the payload bits.

    UTF-8 Encoding bit layout by codepoint range
    Codepoint RangeBytesBit patternPayload length
    U+0000 - U+007F10xxxxxxx7 bits
    U+0080 - U+07FF2110xxxxx 10xxxxxx11 bits
    U+0800 - U+FFFF31110xxxx 10xxxxxx 10xxxxxx16 bits
    U+10000 - U+10FFFF411110xxx 10xxxxxx 10xxxxxx 10xxxxxx21 bits
  2. Step 2: Obtain the payload bits:

    Convert the hexadecimal code point U+0DED to binary: 00001101 11101101. Those are the payload bits.

  3. Step 3: Fill in the bits to match the bit pattern:

    Obtain the final bytes by arranging the paylod bits to match the bit layout:
    11100000 10110111 10101101