TIBETAN MARK NYIS TSHEG·U+0FD2

Character Information

Code Point
U+0FD2
HEX
0FD2
Unicode Plane
Basic Multilingual Plane
Category
Other Punctuation

Character Representations

Click elements to copy
EncodingHexBinary
UTF8
E0 BF 92
11100000 10111111 10010010
UTF16 (big Endian)
0F D2
00001111 11010010
UTF16 (little Endian)
D2 0F
11010010 00001111
UTF32 (big Endian)
00 00 0F D2
00000000 00000000 00001111 11010010
UTF32 (little Endian)
D2 0F 00 00
11010010 00001111 00000000 00000000
HTML Entity
࿒
URI Encoded
%E0%BF%92

Description

U+0FD2 (TIBETAN MARK NYIS TSHEG) is a specific character within the Unicode Standard that plays an important role in digital text, particularly in Tibetan language processing systems. This particular character is used to represent the phonetic sound 'NYI', which is essential for accurate pronunciation and translation of Tibetan words. It has significant cultural and linguistic relevance as it belongs to the Tibetan script, which dates back to the 7th century. The Unicode Standard ensures that characters like U+0FD2 are properly rendered across different digital platforms and devices, enabling effective communication and preserving the richness of the Tibetan language in a globalized digital landscape.

How to type the symbol on Windows

Hold Alt and type 4050 on the numpad. Or use Character Map.

  1. Step 1: Determine the UTF-8 encoding bit layout

    The character has the Unicode code point U+0FD2. In UTF-8, it is encoded using 3 bytes because its codepoint is in the range of 0x0800 to 0xffff.

    Therefore we know that the UTF-8 encoding will be done over 16 bits within the final 24 bits and that it will have the format: 1110xxxx 10xxxxxx 10xxxxxx
    Where the x are the payload bits.

    UTF-8 Encoding bit layout by codepoint range
    Codepoint RangeBytesBit patternPayload length
    U+0000 - U+007F10xxxxxxx7 bits
    U+0080 - U+07FF2110xxxxx 10xxxxxx11 bits
    U+0800 - U+FFFF31110xxxx 10xxxxxx 10xxxxxx16 bits
    U+10000 - U+10FFFF411110xxx 10xxxxxx 10xxxxxx 10xxxxxx21 bits
  2. Step 2: Obtain the payload bits:

    Convert the hexadecimal code point U+0FD2 to binary: 00001111 11010010. Those are the payload bits.

  3. Step 3: Fill in the bits to match the bit pattern:

    Obtain the final bytes by arranging the paylod bits to match the bit layout:
    11100000 10111111 10010010