IDEOGRAPHIC COMMA·U+3001

Character Information

Code Point
U+3001
HEX
3001
Unicode Plane
Basic Multilingual Plane
Category
Other Punctuation

Character Representations

Click elements to copy
EncodingHexBinary
UTF8
E3 80 81
11100011 10000000 10000001
UTF16 (big Endian)
30 01
00110000 00000001
UTF16 (little Endian)
01 30
00000001 00110000
UTF32 (big Endian)
00 00 30 01
00000000 00000000 00110000 00000001
UTF32 (little Endian)
01 30 00 00
00000001 00110000 00000000 00000000
HTML Entity
、
URI Encoded
%E3%80%81

Description

The Unicode character U+3001 represents the Ideographic Comma, a symbol used primarily in digital texts of Chinese, Japanese, and Korean languages. It serves as a comma, but its usage differs from that of the Latin-script comma. In East Asian texts, it is typically placed inside parentheses or at the end of a sentence to indicate a pause or a list item, rather than separating words within a sentence. The Ideographic Comma plays a crucial role in maintaining clarity and readability in digital text, where its unique placement and function distinguish it from other punctuation marks. Its importance lies in its ability to adapt to the various writing systems and conventions of East Asian languages, thereby enhancing the accuracy and fluidity of communication.

How to type the symbol on Windows

Hold Alt and type 12289 on the numpad. Or use Character Map.

  1. Step 1: Determine the UTF-8 encoding bit layout

    The character has the Unicode code point U+3001. In UTF-8, it is encoded using 3 bytes because its codepoint is in the range of 0x0800 to 0xffff.

    Therefore we know that the UTF-8 encoding will be done over 16 bits within the final 24 bits and that it will have the format: 1110xxxx 10xxxxxx 10xxxxxx
    Where the x are the payload bits.

    UTF-8 Encoding bit layout by codepoint range
    Codepoint RangeBytesBit patternPayload length
    U+0000 - U+007F10xxxxxxx7 bits
    U+0080 - U+07FF2110xxxxx 10xxxxxx11 bits
    U+0800 - U+FFFF31110xxxx 10xxxxxx 10xxxxxx16 bits
    U+10000 - U+10FFFF411110xxx 10xxxxxx 10xxxxxx 10xxxxxx21 bits
  2. Step 2: Obtain the payload bits:

    Convert the hexadecimal code point U+3001 to binary: 00110000 00000001. Those are the payload bits.

  3. Step 3: Fill in the bits to match the bit pattern:

    Obtain the final bytes by arranging the paylod bits to match the bit layout:
    11100011 10000000 10000001